Spatial exclusivity combined with positive and negative selection of phosphorylation motifs is the basis for context-dependent mitotic signaling.

TitleSpatial exclusivity combined with positive and negative selection of phosphorylation motifs is the basis for context-dependent mitotic signaling.
Publication TypeJournal Article
Year of Publication2011
AuthorsAlexander, J, Lim, D, Joughin, BA, Hegemann, B, Hutchins, JRA, Ehrenberger, T, Ivins, F, Sessa, F, Hudecz, O, Nigg, EA, Fry, AM, Musacchio, A, Stukenberg, PT, Mechtler, K, Peters, J-M, Smerdon, SJ, Yaffe, MB
JournalSci Signal
Volume4
Issue179
Paginationra42
Date Published2011
ISSN1937-9145
KeywordsAmino Acid Motifs, Animals, Evolution, Molecular, Humans, Mitosis, Peptide Library, Phosphorylation, Protein-Serine-Threonine Kinases, Signal Transduction, Xenopus laevis, Xenopus Proteins
Abstract

The timing and localization of events during mitosis are controlled by the regulated phosphorylation of proteins by the mitotic kinases, which include Aurora A, Aurora B, Nek2 (never in mitosis kinase 2), Plk1 (Polo-like kinase 1), and the cyclin-dependent kinase complex Cdk1/cyclin B. Although mitotic kinases can have overlapping subcellular localizations, each kinase appears to phosphorylate its substrates on distinct sites. To gain insight into the relative importance of local sequence context in kinase selectivity, identify previously unknown substrates of these five mitotic kinases, and explore potential mechanisms for substrate discrimination, we determined the optimal substrate motifs of these major mitotic kinases by positional scanning oriented peptide library screening (PS-OPLS). We verified individual motifs with in vitro peptide kinetic studies and used structural modeling to rationalize the kinase-specific selection of key motif-determining residues at the molecular level. Cross comparisons among the phosphorylation site selectivity motifs of these kinases revealed an evolutionarily conserved mutual exclusion mechanism in which the positively and negatively selected portions of the phosphorylation motifs of mitotic kinases, together with their subcellular localizations, result in proper substrate targeting in a coordinated manner during mitosis.

DOI10.1126/scisignal.2001796
Alternate JournalSci Signal
PubMed ID21712545
Grant ListCA-112967 / CA / NCI NIH HHS / United States
ES-015339 / ES / NIEHS NIH HHS / United States
GM-60594 / GM / NIGMS NIH HHS / United States
GM-68762 / GM / NIGMS NIH HHS / United States