Title | A nanoparticle-based combination chemotherapy delivery system for enhanced tumor killing by dynamic rewiring of signaling pathways. |
Publication Type | Journal Article |
Year of Publication | 2014 |
Authors | Morton, SW, Lee, MJ, Deng, ZJ, Dreaden, EC, Siouve, E, Shopsowitz, KE, Shah, NJ, Yaffe, MB, Hammond, PT |
Journal | Sci Signal |
Volume | 7 |
Issue | 325 |
Pagination | ra44 |
Date Published | 2014 May 13 |
ISSN | 1937-9145 |
Keywords | Animals, Antineoplastic Combined Chemotherapy Protocols, Doxorubicin, Drug Carriers, Erlotinib Hydrochloride, Female, Liposomes, Mice, Mice, Inbred BALB C, Nanoparticles, Neoplasms, Experimental, Quinazolines |
Abstract | Exposure to the EGFR (epidermal growth factor receptor) inhibitor erlotinib promotes the dynamic rewiring of apoptotic pathways, which sensitizes cells within a specific period to subsequent exposure to the DNA-damaging agent doxorubicin. A critical challenge for translating this therapeutic network rewiring into clinical practice is the design of optimal drug delivery systems. We report the generation of a nanoparticle delivery vehicle that contained more than one therapeutic agent and produced a controlled sequence of drug release. Liposomes, representing the first clinically approved nanomedicine systems, are well-characterized, simple, and versatile platforms for the manufacture of functional and tunable drug carriers. Using the hydrophobic and hydrophilic compartments of liposomes, we effectively incorporated both hydrophobic (erlotinib) and hydrophilic (doxorubicin) small molecules, through which we achieved the desired time sequence of drug release. We also coated the liposomes with folate to facilitate targeting to cancer cells. When compared to the time-staggered application of individual drugs, staggered release from tumor-targeted single liposomal particles enhanced dynamic rewiring of apoptotic signaling pathways, resulting in improved tumor cell killing in culture and tumor shrinkage in animal models. |
DOI | 10.1126/scisignal.2005261 |
Alternate Journal | Sci Signal |
PubMed ID | 24825919 |
PubMed Central ID | PMC4138219 |
Grant List | 1F32EB017614-01 / EB / NIBIB NIH HHS / United States F32 EB017614 / EB / NIBIB NIH HHS / United States P30 CA014051 / CA / NCI NIH HHS / United States P30-CA14051 / CA / NCI NIH HHS / United States R01 ES015339 / ES / NIEHS NIH HHS / United States R01-ES015339 / ES / NIEHS NIH HHS / United States R21 ES020466 / ES / NIEHS NIH HHS / United States R21-ES020466 / ES / NIEHS NIH HHS / United States U54 CA112967 / CA / NCI NIH HHS / United States U54 CA151884 / CA / NCI NIH HHS / United States U54-CA112967 / CA / NCI NIH HHS / United States U54-CA151884 / CA / NCI NIH HHS / United States |